
White paper [PRELIMINARY- September 28, 2020]

AI-Powered Testing Automation
Expand your testing capacity, get faster feedback, and improve quality
through AI-based test automation

Overview
Bluewind shows how to apply artificial intelligence(AI) to test automation.

The presented work is based on recent developments at Bluewind exploiting AI/ML in real product testing.
Notably, an AI-powered test setup rfor medical equipment (End of Line), revealed an increase of 20% fault detection,
and a decrease in manual testing (production) estimated around 45%.
Another AI-powerd test setup for Industrial Sensors, (Functional Test) provided a 15% increase in quality
performance, while requiring only 25% of the previous manual test effort.

As more and more organizations have taken to Agile development, they are carrying out development and testing in
multiple iterations. The concepts of “Continuous Integration” (CI), “Continuous Development” (CD), and “Continuous
Deployment” are very important in Agile.

Organizations can make continuous deployment a reality only if they continuously test their applications. As
development proceeds at a fast pace, the testing must keep pace with it. This makes test automation very important
in the world of Agile development.

www.bluewi nd.it

http://www.bluewind.it/
http://www.bluewind.it/

Earlier, manual testing ruled the world of testing, however, test automation increasingly became a reality in most
organizations developing software. Testing continued to evolve, and it took advantage of technology innovations.
Artificial Intelligence(AI) is one such technology that has made a substantial contribution to automation in general.

The benefits for AI in software testing are astronomical. While still in its infancy, artificial intelligence is starting to
impact software development and quality assurance and seems to be the natural progression in the race to seamless
and fast delivery cycles.

AI in Software Test Automation

The use of AI in software development is still in its infancy, and the level of autonomy is much lower than seen in
more evolved areas such as self-driving systems or voice-assisted control, although it is still driving forward in the
direction of autonomous testing.

The application of AI in software testing tools is focused on making the software development lifecycle easier.
Through the application of reasoning, problem solving, and in some cases, machine learning, AI can be used to help
automate and reduce the amount of mundane and tedious tasks in development and testing.
“Don’t test automation tools do this already?” you might ask. And the answer is of course, “Yes! They do!” …but they
have limitations.

Where AI shines in software development is when it is applied to remove those limitations, to enable software test
automation tools to provide even more value to developers and testers. The value of AI comes from reducing the
direct involvement of the developer or tester in the most mundane tasks. (Human intelligence is still very much
needed in applying business logic, etc.).

AI and machine learning

So, what about machine learning? Machine learning can augment the AI by applying algorithms that allow the tool to
improve automatically by collecting the copious amounts of data produced by testing.

Machine learning research is a subset of overall AI research, with a focus on decision-making based on previously-
observed data. This is an important aspect of AI overall, as intelligence requires modifying decision-making as
learning improves. In software testing tools, though, machine learning isn’t always necessary — sometimes an AI-
enabled tool is best manually fine-tuned to suit the organization using the tool, and then the same logic and

reasoning can be applied every time, regardless of the outcome.

In other cases, data collection is key to the decision-making process, and machine learning can be extremely
valuable, requiring some data initially and then improving or adapting as more data is collected. For example, code
coverage, static analysis results, test results, or other software metrics, over time, can inform the AI about the state
of the software project.

Deep Learning

Machine Learning has its own subset called Deep
Learning, which is built on the processing of vast amount
of data to learn from. Such data, in most cases, is
represented by multilayered Neural Networks – they are
models inspired by net of human neurons, helping
computers to acquire new knowledge and to reason
highly intelligently.

The key aspect of Deep Learning is huge amount of
information represented by Neural Networks to drive
decision-making process. Such amount of data is not
always available or not applicable in software testing –
maybe that’s why we don’t see many cases of Deep
Learning usage in those areas yet.

One possible example would be “learning” from tens of
millions lines of code to understand different types of
security violations, and to implement a static analysis
engine based on such deep learning model.

Examples of AI and Machine Learning in Software Testing

This is an important area of research and development at Bluewind. Excitingly, our current offerings and our ongoing
research in AI and ML continues to bring new ways to integrate these technologies into our products. Here are a few
ways we have already brought them in.

Using AI and Machine Learning to Improve the Adoption of Static Analysis

One of the roadblocks to successful adoption of static analysis tools is managing a large number of warnings and
dealing with false positives (warnings that are not real bugs) in the results. Software teams that analyze a legacy or
existing code base struggle with the initial results they get with static analysis and are turned off by this experience
enough to not pursue further effort. Part of the reason for being overwhelmed is the numbers of standards, rules
(checkers), recommendations, and metrics that are possible with modern static analysis tools.

Software development teams have unique quality requirements and there are no one-size-fits-all recommendations
for checkers or coding standards. Each team has their own definition of false positive, often meaning “don’t care”
rather than “this is technically incorrect.” Bluewind’s solution to this is to apply AI and machine learning to prioritize
the findings reported by static analysis to improve the user experience and adoption of such tools.

Bluewind uses a method to quickly classify the findings in the output of a static analysis tool as either something
that the team wants to see or something the team wants to suppress by reviewing a small number of findings and
constructing a classifier based on the metadata associated with those findings. This classifier is based on results of
previous manual classifications of static analysis findings in the context of both historical suppressions of irrelevant
warnings and prior prioritization of meaningful findings to fix inside the codebase.

The end results are classified in two ways:

• Of interest for the team to investigate

• Items that can be suppressed

This greatly improves the user experience by directing developers to warnings that have the highest likelihood of
applying to their project. With these innovations, organizations can immediately reduce manual effort in their
adoption and use of static analysis.

End of line testing strategy using python+Ml

End of line testing is a process in which teams will validate an entire application workflow, from start to finish.

The root goal of running end-to-end tests is to ensure critical business processes function properly, across an entire
application’s architecture and user scenarios.
Automating end-to-end testing is possible, but is extremely hard to maintain and scale.

Bluewind proposes an end of line testing strategy based on python as test preparation framework and on ML for bug
discovery.

Python as a test preparation framework

Bluewind develop an automation framework that enables testers to write test cases easily and developing
interactions with the device under test. The framework was developed with python.

Python is one of the most popular programming languages. Python was an obvious choice due to several reasons:

• Enables adding AI/ML parts very easily

• Many automation tools are available

• No compilation necessary

• Python is easy to read and is very flexible

• Python is mature with much supports behind it

ML for bug discovery

AI\ML is very useful in the end of line(also while software developing) context for bad behavior detection.
It's possible to test by learning instead of deeply understanding the good/bad behavior of a complex system.
Knowing in advance mainly what a "good behavior" is, and not knowing all possible failure modes, is a perfect fit for
ML.

Even if you knew what to look for, finding anomalous behavior then connecting the dots to develop a complete
picture from a huge number of activities may turn out to be humanly impossible. Especially, if you have a large group
of users. The data points can easily end up into hundreds of thousands, even exceeding millions. Machine learning
can be very good at crunching such large data and finding patterns outside the nominal baseline. Machine learning is
also good at finding clues in datasets spread across multiple sources.

A common approach used by many solutions is ‘anomaly detection’, also known as ‘outlier detection’. The idea is: a
user’s (software or hardware) behavior should match with the rest in their group or past activities, called a baseline.
Events or observations that deviate from this baseline is an anomaly. Typically, such an anomaly might be an
indicator of fraud, sabotage, collusion, data theft or other malicious intent. Once an early deviation is detected, the
algorithm can flag the incident for further investigation or if designed to do so, compare the incident with similar
events recorded in the past. This record(s) could be the result of a previously executed Supervised algorithm where
the anomalies were labeled as ‘normal’ or ‘abnormal’ by a human analyst, acquired from previous training data or a
crowd-sourced knowledge base.

Finally, the threat is reported with a risk score factoring in the frequency, resources involved, potential impact,
number of nodes it’s affecting and other variables. Here it's important to mention that the same ML approach is
applied during software development (this is routing during development) in order to enhance test cases and
execute a double check to filter more device problems

How AI-Powered Testing Automation Transforms Businesses

Businesses that have a commitment to implementing AI at the enterprise level are already experiencing greater
operational efficiency and better product results.

Developers are renegotiating their involvement within Agile and DevOps strategies, as smart algorithms are now
capable of tackling the most repetitive problems presented in testing automation. Not only is product development
significantly streamlined when testing automation changes from the bottleneck to the catalyst within a CI/CD
pipeline, but also, executives are provided with business intelligence previously unavailable that directly impacts the
bottom line.

Functionize is partnering with Google Cloud to build advanced anomaly detection through canary testing where a
small set of users are used for real-world testing of new code. AI is used to compare the experience of these users
with those running the existing code. Anomalies can then be identified automatically, and details passed back to the
developers.

The Future of Artificial Intelligence and Machine Learning

So what comes next?

Bluewind is very active in this space, continuing to pursue further applications of artificial intelligence and machine
learning to augment our software testing tool suite.

There are many routes of research, but the end goal is clear: to help teams develop and test their code more
efficiently and effectively, to create higher quality software at speed.

Bluewind Srl

Via della Borsa, 16/A - 31033
Castelfranco Veneto (TV) - Italy

+39 0423 723431 - info@bluewind.it

mailto:info@bluewind.it

